A strong two-photon induced phosphorescent Golgi-specific in vitro marker based on a heteroleptic iridium complex.
نویسندگان
چکیده
A new heteroleptic iridium complex demonstrated low cytotoxicity and near-infrared excitation (via two-photon absorption) for target-specific in vitro Golgi imaging in various cell lines (HeLa and A549 cells) with two-photon absorption cross section (~350 GM) in DMSO.
منابع مشابه
Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials
Even though organic light-emitting device (OLED) technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs), further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting sp...
متن کاملTuning the electronic and photophysical properties of heteroleptic iridium(III) phosphorescent emitters through ancillary ligand substitution: a theoretical perspective.
The development and application of phosphorescent emitters in organic light-emitting diodes (OLEDs) have played a critical role in the push to commercialization of OLED-based display and lighting technologies. Here, we use density functional theory methods to study how modifying the ancillary ligand influences the electronic and photophysical properties of heteroleptic bis(4,6-difluorophenyl) p...
متن کاملThe effect of substituted 1,2,4-triazole moiety on the emission, phosphorescent properties of the blue emitting heteroleptic iridium(III) complexes and the OLED performance: a theoretical study.
A series of neutral heteroleptic mononuclear iridium(III) complexes was investigated using the density functional theory/time-dependent density functional theory approach to determine the effect of the substituted 1,2,4-triazole moiety on the electronic structures, emission, and phosphorescent properties and the organic light emitting diode (OLED) performance. The results reveal that substituti...
متن کاملNovel, highly efficient blue-emitting heteroleptic iridium(III) complexes based on fluorinated 1,3,4-oxadiazole: tuning to blue by dithiolate ancillary ligands.
Novel blue-emitting phosphorescent iridium(III) complexes with fluorinated 1,3,4-oxadiazole derivatives as cyclometalated ligands and dithiolates as ancillary ligands have been synthesized and fully characterized; highly efficient OLEDs have been achieved using these complexes in the light-blue to blue-emitting region.
متن کاملDevelopment of a cyclometalated iridium complex with specific intramolecular hydrogen-bonding that acts as a fluorescent marker for the endoplasmic reticulum and causes photoinduced cell death† †Electronic supplementary information (ESI) available: Detailed synthesis; photophysical data (Table S1); pH dependent phosphorescence lifetime of complex C2 (Table S2); crystallographic parameters of C2; selected bond distances and angles of C2 (Table S3); cyclic voltammetric data of complexes C1–C11 (Table S4); 1H NMR spectra of ligands and complexes (Fig. S1 and S3); ESI-MS spectra of ligands and complexes (Fig. S2 and S4); fluorescence spectra of the complexes in acetonitrile and at pH 4, 7 and 9, exponential decay curve of C2 (Fig. S5); pH dependent fluorescence spectrum of complexes C1–C11 (Fig. S6); DIC and confocal fluorescence images of live MCF7 cells not treated with C2 but exposed to photoirradiation at 405 nm for 30 min; the cells were treated with DCFDA and fluorescence images were obtained at 529 nm after excitation at 495 nm (Fig. S7). ESI videos 1 and 2. CCDC 967841. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4dt00845f Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file.
Cyclometalated iridium complexes have important applications as phosphorescent probes for cellular imaging due to their photophysical properties. Moreover, these properties also make them potential candidates as photosensitizers for photodynamic therapy (PDT) of tumors and skin diseases. Treatment of MCF7 breast carcinoma cells with a heteroleptic phosphorescent cyclometalated iridium(III) comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 48 19 شماره
صفحات -
تاریخ انتشار 2012